
Evaluating the Effect of Online

Compression on the Disk Cache of

Storage System

Odysseas I. Pentakalos 1 and Yelena Yesha 2
Computer Science Department

University of Maryland Baltimore County
Baltimore, Maryland 21228

and

Center of Excellence in Space Data and Information Sciences
Goddard Space Flight Center
Greenbelt, Maryland 20771

N95- 24138

Data

a Mass

APPENDIX

A trace driven simulation of the disk cache of a

mass storage system was used to evaluate the ef-

fect of an online compression algorithm on various

performance measures. Traces from the system at

NASA's Center for Computational Sciences were
used to run the simulation and disk cache hit ra-

tios, number of files and bytes migrating to ter-

tiary storage were measured. The measurements

were performed for both an LRU and a size based

migration algorithm. In addition to seeing the ef-

fect of online data compression on the disk cache

performance measure, the simulation provided in-

sight into the characteristics of the interactive ref-

erences, suggesting that hint based prefetching al-

gorithms are the only alternative for any future

improvements to the disk cache hit ratio.

I. Introduction

Mass storage systems are used in research envi-

ronments for storing data generated by scientific
simulations and satellite observations in amounts

on the order of terabytes. The cost of storage de-

vices of that capacity is still very high while the

rate of increase in disk space requirements by the

users grows continuously. This problem is espe-

cially evident in scientific research centers where

enormous amounts of data are generated on a daily

basis which must be archived so that they can be

analyzed at a later time [1], [2].

In this study the actual system under consider-

1Email: odysseas_cs.umbc.edu
2 Email: yeyesha_cs.umbe.edu

PRECEDING PA_E _LANK NY_ FILMED

ation is the Unitree Mass Storage System (UMSS)

used at NASA's Center for Computational Sci-

ences (NCCS). The system administrators are ex-

periencing a situation where they constantly need

to purchase additional storage devices which are

filled to capacity in a decreasing amount of time.

The main resource whose utilization must be op-

timized in this case is storage capacity. Re-

moving the redundancy in the data stored in

the file system, by inserting an online compres-

sion/decompression module, is one method of in-

creasing the effective capacity of the system with-

out the addition of expensive hardware devices.

After considering various alternative locations in

the system at which the compression algorithm

could be placed we determined that the user in-

terface would be the best choice. Some of the ad-

vantages of placing compression at the user inter-

face are: a) does not impose an additional load on

the storage servers CPU, b) reduces the amount of

data that flows through the network, and c) does

not require modifications to the Unitree code.

To evaluate the performance of compression on

the specific data stored at NCCS, the ffp clients

were modified to implement Ziv-Lempel and LZW

compression transparently [3], [4], [5]. Sequential

and pipelined implementations were tested against

two sets of files and the performance of each im-

plementation was compared based on file compres-

sion ratio and compression rate. An earlier paper

describes the implementations and the results in

detail [6].

383 pAG_.._._ _INTENTtOHALLY BLANK_

In this study we examine the effect of compres-

sion on the disk cache of the mass storage sys-

tem. A simulation is used to determine the effect

of compressing data on the hit-ratio of the disk

cache, the number of migrations of files from the

disk cache to robotic storage, and the total number

of bytes migrating to robotic storage. We also look

at two different migration algorithms and their ef-

fect on the hit ratio and the file migrations.

Section two gives a description of the system

under consideration and reviews terminology that

will be used throughout the rest of the paper. Sec-
tion three describes the simulation used in this

study. Section four describes the simulations per-

formed and analyzes the results. Section five con-

cludes the paper and discusses future work.

II. System Overview

The UMSS is a hierarchical mass storage man-

agement system which runs as a centralized ap-

plication program on top of the Unix operating

system and manages a hierarchical mass storage

file system. The specific installation offers three

levels in the storage hierarchy. Figure 1 shows the

typical storage pyramid provided by most hierar-

chical mass storage systems. At the higher level

it provides a disk array, with a total capacity of

150 GBs, which serves mainly as a cache for the

lower levels. The second level has a capacity of 4.8

terabytes provided by four near-line robotic tape

storage units. The third level is the off-line storage
vault which has the slowest transfer rate serving

as the long-term repository.

Users access files stored in the UMSS using the

ftp protocol from their local workstations via a
local area network. In addition to the ftp proto-

col, UMSS also provides an NFS interface to the

file system but due to performance and security

reasons the NFS protocol is not used by many in-

stallations including the one at NCCS. The UMSS

was designed in a modular fashion in order to

make possible its distribution over multiple host

machines. Figure 2 shows a block diagram of the

UMSS components [7].

Each of the components shown in figure 2 is rep-

resented by one or more independent daemon pro-

cesses and is responsible for certain tasks. The

"Name Server" resolves string file names used by

the users, into unique integer identifiers, used in-

ternally by all the other components of the UMSS.

The "Disk Server" keeps track of the files stored

in the disk cache, providing the view of a Unix

file system to the user. The "Disk Mover" is re-

sponsible for all transfers to and from the disk

cache. The "Migration Server" controls the migra-

tion of files from the disk cache to lower levels in

the disk hierarchy to ensure that the disk cache al-

ways has sufficient free space to operate efficiently.

The "Tape Server" keeps track of the files stored in

the tape storage units whether online or off-line.

The "Tape Mover" performs all file transfers to

and from a tape device. The physical device man-

ager is responsible for managing the tape mounts,

scheduling them in an order which maximizes the

utilization of the system resources. Finally, the

"Physical Volume Repository" is responsible for

mounting and dismounting both automated on-

line and off-line storage physical volumes [8]. Any

files retrieved from the UMSS are first placed in

the disk cache, if they are not already there, and

then are transferred to the user. Likewise, any files

stored into the UMSS are first stored in the disk

cache and then they are moved to a lower level of

the hierarchy through migration.

In an earlier paper we investigated the effec-

tiveness of an online data compression algorithm

placed at the user interface of a mass storage sys-

tem [6]. For a sequential implementation the fol-

lowing inequality describes the trade-off in time of

compressing the data online.

S s s(I
RU > n,
1 1 1 - r,

R-/ > + R--T-
R_ < rcRc (1)

where S is the size of the file, R_ is the file trans-

fer rate, Rc is the compression rate and r_ is the

compression ratio normalized to the range [0, 1].
The left hand side is the time it takes to transfer

the file without compression and the left side with

compression. If the compression rate of the com-

pression algorithm used is faster than the transfer
rate of the network between the client and the

server then the embedded compression increases

the effective capacity of the storage server at no

384

additional cost. Note that by cost here wemean
the amount of time it takesto store a file into the
massstorage system. If this inequality does not
hold, the online compressionalgorithm increases
the effective capacity of the system at the ex-
penseof added time when storing the file. The
aboveinequality appliesonly to the sequentialim-
plementation. Assumingthat the communication
time between the parent and child processesis
negligible we can derive a similar relation for the
pipelined implementationasshownin inequality 2.

S S S(1 - re)
R---_ > max{-, } (2)Rc Rt

The total time of the pipeline is bounded by the

maximum of each of its components. Which of

the two components prevails will depend on the

particular client making the request and on the

network topology. If the client is connected locally

relative to the server but is a slow machine then

the compression component will prevail whereas

on a fast machine which is a few hops from the

server the transmission component will prevail.

III. Disi< Cache Simulation

A trace-driven simulation of the disk cache was

used to ascertain the effect on the hit ratio and on

the migration of files caused by file compression

and migration algorithm. A discrete event simu-

lator was developed using the ftp request traces to
drive the simulation. The disk cache size was var-

ied from 150GB, which is the actual disk cache size

at the NCCS site, to 250GB. Initially the cache

was assumed to be empty. The disk cache was

represented by a doubly linked list of structures

which described each file entry. The information

stored for each file were a unique file identifier, the

file size, a timestamp of the time the file entered

the disk cache, and an indicator of whether the file

is stored in the disk cache or in the lower levels of

the hierarchy.

Put requests were placed in the disk cache. If

the file already resided in the cache or lower in

the hierarchy the operation was processed as an

update, ensuring that only one copy of the file

existed in the entire mass storage system. For get

requests, if the file existed in the disk cache then

the request was considered a hit. If the file existed

lower in the hierarchy it was staged in the disk

cache. If the file requested did not exist in the

hierarchy, it was processed as if it was in the lower

levels of the hierarchy and a new entry was created

for the file in the disk cache.

Migration in simulated time was performed us-

ing a high water mark as in the UCFM. If the

amount of free space in the cache went below the

high water mark of 75% the total disk cache ca-

pacity, files were migrated to the lower levels of

the hierarchy to create more space. Two different

migration algorithms were tested. The first one,

was LRU based, selecting files to migrate which

had resided in the cache the longest without be-

ing referenced. The second algorithm was based

on the file size, migrating larger files first.

Since it would be impractical to collect the com-

pression ratios for each of the files in the mass stor-

age system each simulation run used a fixed com-

pression ratio. The simulation was run for various

compression ratios ranging from 0% to 60% com-

pression.

IV. RESULTS

The ftp interactive request logs for a period of
three months were used to run the simulation. The

total number of references in that three month pe-

riod was approximately 106,000. The references

from the first two months were used for bringing

the disk cache to a warm state. Then the number

of hits, the hit ratio, the number of files migrating

to tertiary storage, and the total number of bytes

migrated were measured for fixed values of com-

pression ratio. The simulation was run also for

two different migration algorithms. The first mi-

gration algorithm, which selected files to migrate

if they had resided on the disk cache the longest

without being referenced, will be referred to as

the LRU based algorithm. The second algorithm

which selected files to migrate based on their file

size will be referred to as the Size based algorithm.

The hit ratio was computed as the number of hits

per day over the number of get requests on that

specific day.

One important observation that was made about

the reference patterns used in this mass storage

system was that the requests do not exhibit sig-

nificant temporal locality. Users do not tend to
385

re-usetheir files very frequently asin a typical file
system. This implies that this specificmassstor-
age system is used more as an archivethan as a
typical file system. Since the working set of the
get requeststream continuouslychanges,only low
hit ratios are possibleregardlessof sizeincreases
to the disk cache.

In order to be able to compare the hit ratios
measuredwith some sort of an optimal hit ratio

we run the simulation on the same trace data set-

ting the compression ratio to a value very close to
zero. This allowed all the files to fit within the disk

cache, imitating a disk cache of an enormous size,

generating no migrations. This experiment was

used to generate the optimal (OPT) disk cache

hit ratios. The same method was used to com-

pute the hit ratio of this cache as in the other
cases. Table I summarizes the effect of compres-

sion on the number of hits for each of the exper-

iments. The table is divided in three major col-

umn groups for each of the migration algorithms.

The first column group shows the results for the

LRU based migration algorithm, the second col-

umn group for the Size based migration algorithm,
and the last column shows the results for the OPT

disk cache. The first two column groups consist

of three columns, one for each of three different

compression ratios attempted. Comparing the re-

sults from the two migration algorithms against

the results under OPT we see that the number of

hits for both algorithms are very close to the op-

timal. Compression does not affect the hit ratio

very much and this is because the disk cache is

large enough to support the hits in the reference

patterns. It should be noted that the LRU based

algorithm exhibits the inclusion property as ex-

pected since the number of hits is non-decreasing
with increases in the disk cache size. On the other

hand, the size based algorithm in certain cases de-

creases with a larger effective disk cache size.

The hit ratios were also plotted in figure 3 for

various compression ratios. The plot on the top
shows the hit ratio variation with respect to the

compression ratio for the size based migration al-

gorithm and the bottom plot shows the variation
for the LRU based migration algorithm. It is ap-

parent from these figures that size based migration

gorithm. The variation in compression ratio does

not have significant effect on the hit ratio and the
reason for this is the same as discussed in the pre-

vious paragraph. This implies that adding addi-

tional disks to the disk cache will not have any

effect on the hit ratio based on the references an-

alyzed. Also any further effort in improving the

hit ratio by varying the migration algorithm will

not generate any significant improvement on the

hit ratio. The only possible method of increas-

ing the hit ratio would be to develop a prefetching

algorithm that is based on hints provided by the

user,

The second part of the simulation analysis fo-

cused on the migrations. Since migration involves

the use of tape drives from the robotic silos it is

an expensive operation. Thus, reducing the num-

ber of migrations or the total number of bytes mi-

grating to the tape will improve the mass storage

system's performance. Figure 4 shows the number

of files migrating versus compression ratio for the

two migration algorithms. The LRU based algo-

rithm maintains a consistent number of migrations

and tends to smooth the migration operations over

time. It appears that the effect of file compres-

sion is minimal. Looking at the peaks in the LRU

based algorithm it appears that compression sim-

ply shifts the migration effects but does not reduce
their number. The size based migration algorithm

decreases significantly the number of migrations

but it has the negative effect of generating on cer-

tain days tremendous migration traffic. Analyz-

ing the file sizes for both get and put requests
we found that the mean file size of files stored in

the storage system is an order of magnitude larger

than the mean file size of files retrieved. Since

the size based algorithm removes larger files first,

eventually it runs out of large files and it has to

remove a huge number of small files to free space
in the disk cache.

Figure 5 shows the number of bytes migrating

to robotic storage for various compression ratios.

It is apparent that for both migration algorithms

the higher compression ratio provides significant

reduction in the number of bytes that need to mi-

grate. The size based migration algorithm pro-

vides better performance throughout the simula-

provides higher hit ratios than the LRU based al- tion period. The time it takes the system to pro-
386

TABLEI
Numberof CacheHits over Compression Ratio

LRU Based Size Based

rc 0.0 0.2 0.4 0.0 0.2 0.4 OPT

1 285 285 286 285 286 286 286

2 87 87 87 104 104 104 105

3 186 186 186 186 186 186 202

4 342 342 342 343 343 343 352

5 235 241 242 435 435 435 293

6 1086 1087- 1088 1089 1088 1087 1130

7 1323 1323 1323 1500 1500 1500 1698

8 143 143 143 145 145 145 153

9 60 60 60 63 63 61 63

10 250 250 250 248 248 248 252

11 321 321 321 317 317 318 324

12 422 422 422 434 434 434 464

13 371 371 371 354 355 355 409

14 376 381 381 376 376 377 436

15 1249 1249 1251 1244 1243]244 1256

cess a migration involves an overhead time and a
data transfer time. The overhead time consists of

mounting the tape on a tape drive, a seek time to

place the tape drive heads at the proper location, a

rewind time after the data have been written, and

an unmount time. Reducing the number of migra-

tions from the disk cache affects the overhead time

while reducing the number of bytes migrating to

robotic storage reduces the data transfer time.

V. Conclusion

We evaluated the performance of an online com-

pression algorithm on the disk cache of a mass

storage system. A trace driven simulation of the
disk cache was used for the evaluation. The traces

used to drive the simulator were collected from the

ftp logs of the system. The simulation was config-

ured to match the disk space and migration algo-

rithm of the system at NCCS. The effect of com-

pression was simulated by uniformly reducing the

file size of the get and put requests. Various com-

pression ratios were used in the simulation. The

simulation also evaluated two different migration

algorithms, specifically an LRU based and a size

based algorithm.

the references at this mass storage system was that

the working set continuously changes. This im-

plies that the disk cache hit ratio cannot be im-

proved significantly by increasing the disk cache

size since get operations are usually to files that

were stored in the mass storage system a very

long time in the past. This effect was evident by

comparing the two migration algorithms against

a disk cache which was large enough to store all

files stored during the three month evaluation pe-

riod. As a result both algorithms attained hit ra-

tios very close to the optimal hit ratios of the huge

cache. Comparing the two migration algorithms

we found that the size based algorithm decreases

the total number of bytes migrating to tertiary

storage at the expense of causing occasional peaks

in the number of files migrating. Both algorithms

were not affected by the compression ratio due to

the fact that the disk cache is of large enough size

to cover the intereference pattern of the requests.

Future work will focus on evaluating various

prefetching algorithms. The current simulation

suggested that only the use of user hints and an

appropriate prefetching algorithm can improve the

hit ratio of this system. The use of transparent

One important observation that was made about _ iniormed prefetching could be applied to improve
387

the hit ratio of the disk cacheby exploiting ap-
plication level hints about future file accesses[9].
Another areaof future researchis the implementa-
tion and evaluationof migration algorithmsbased
on a combination of file sizeand cacheresidency
time as described in [10], [11]. This simulation
analysisshowedthat sizebasedmigration reduces
the numberof bytes that migrate to tertiary stor-
agebut occasionallyit producesa largenumberof
migration loads. By using a migration algorithm
basedon the spacetime product we expect that
the migration peaks will disappear, while main-
taining the lower number of bytes migrating.

[11] Alan Jay Smith, "Long Term File Migration: Development

and Evaluation of Algorithms", Communications of the

ACM, vol. 24, no. 8, pp. 521-532, August 1981.

Acknowledgements

We would like to thank Adina Tarshish, Ellen

Salmon and George Rumney from NASA's Cen-

ter for Computational Sciences at Goddard Space

Flight Center for providing the ftp traces and the

NCCS file set used for testing our ideas.

REFERENCES

[1] Randy H. Katz, Thomas E. Anderson, John K. Ouster-
hout, and David A. Patterson, "Robo-line Storage: Low

Latency, High Capacity Storage Systems over Geographi-

cally Distributed Networks", Tech. Rep. UCB/S2K-91-3,

University of California, Berkeley, March 1994.

[2] Ethan L. Miller and Randy H. I(atz, "An Analysis of File

Migration in a Unix Supercomputing Environment", Tech.

Rep. UCB/CSD-92-712, University of California, Berkeley,
March 1993.

[3] J. Ziv and A. Lempel, "A Universal Algorithm for Sequen-
tim Data Compression", IEEE Transactions on Informa-

tion Theory, vol. 23, no. 3, pp. 337-343, 1977.

[4] Debts A. Lelewer and Daniel S. Hirschberg, "Data Com-

pression", ACM Computing Surveys, vol. 19, no. 3, pp.

261-296, September 1987.

[5] Terry A. Welch, "A Technique for High-Performance Data
Compression", IEEE Computer, vol. 17, no. 6, pp. 8-19,
June 1984.

[6] Odysseas I. Pentaka]os and Yelena Yesha, "Online Data

Compression for Mass Storage File Systems", manuscript
available from the author, July 1994.

[7] Adina Tarshish and Ellen Salmon, "The Growth of the
Unitree Mass Storage System at the NASA Center for

Computational Sciences", in 3rd NASA GSFC Conference

on Mass Storage Systems and Technologies, College Park,

Maryland, October 1993, pp. 19-21.

[8] Convex Computer Corporation, Unitree÷÷ System Ad-
ministration Guide, First Edition, Convex Press, Richard-

son, Texas, 1993.

[9] Hugo R. Patterson, Garth A. Gibson, and M. Satya-
narayanan, "A Status Report on Research in Transparent

Informed Prefetching", Operating Systems Review, vol. 27,

no. 2, pp. 21-34, April 1993.

[10] Alan Jay Smith, "Analysis of Long Term File Reference
Patterns for Application to File Migration Algorithms",

IEEE Transactions on Software Engineering, vol. SE-7, no.

4, pp. 403-417, July 1981. 388

/ omine \

/ s,o_ag_ \

Fig. 1. Hierarchical Storage Pyramid

Fig.2. UMSS Block Diagram

389

1.0

0.8

0.6

0.4

0.2

0.0

Size Based Migration
.... , i

I 0.0
---- 0,4

-- Optimal

5 10 15 20 25 30

LRU Based Migration
1.0 , , , , . . , . . , ,

..........0.0
--- 0,4

0.8 -- Oplimat

0.6 ___

0.4

o.2

0.0
0 5 10 15 20 25

Fig. 3.

16000.0

Hit-Ratio versus Compression Ratio

Size Based Migration

3O

12_0.0

8_0.0

4_0.0

0.0

ti
' ii

/!ii

i !\ / il !,;_,

0 10 20 30

LRU Based Migration
16_0.0

12_0.0

8_0.0

4_0.0

0.0

' -. .:" \ .:'\ , ,

L
• f

10 20 30

Fig. 4. Number of Migrations versus Compression Ratio

39O

6e+07

Size Based Migration

4e+07

2e+07

0
0 10 20 3O

6e+07

LRU Based Migration

4e+07

2e+07

Fig. 5.

\/

I

10 2=0 30

Bytes Migrated versus Compression Ratio

391

